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The evolution of collisionless and semi-collisional tearing mode instabilities is studied using an
electromagnetic gyrokinetic é f particle-in-cell simulation model. Drift-kinetic electrons are used.
Linear eigenmode analysis is presented for the case of fixed ions and there is excellent agreement
with simulation. A double peaked eigenmode structure is seen indicative of a positive A’. Nonlinear
evolution of a magnetic island is studied and the results compare well with existing theory in terms
of saturation level and electron bounce oscillations. Electron-ion collisions are included to study the
semi-collisional regime. The algebraic growth stage is observed and compares favorably with theory.
Nonlinear saturation following the Rutherford regime is observed and compared with recent theory.

I. INTRODUCTION

Tearing mode instabilities play an important roll in
tokamak discharges. The basic process is the anti-parallel
magnetic field lines break and reconnect in the plasma to
form magnetic islands. The perturbed vector potential is
symmetric with respect to the central layer. The tearing
mode instability can be described by the tearing mode
parameter, A', first introduced by Furth et al.[1], where
A’ > 0 means unstable and A’ < 0 means damping.
Recently there have been many studies on other stabiliz-
ing and destabilizing mechanisms that affect the tearing.
Especially for A’ < 0, where an extra instability drive is
needed to counteract the damping caused by negative A’.
These destabilizing effects include the bootstrap current
for high pressure plasma which leads to neoclassical tear-
ing mode[2, 3], and drift effects(see, for example, ref.[4])
which are mainly stabilizing and lead to the drift tearing
mode[5] especially in the case of small magnetic islands.

This paper focuses on simulation of the classical tear-
ing mode instability caused by positive A’. Originally
the instability was studied using resistive magnetohydro-
dynamics (MHD) theories[1, 6-14], in which resistivity
is essential in the central layer, however the outer re-
gions are assumed non-resistive. The linear growth rate
is then dependent on A’ and resistivity. Hazeltine et
al.[15] applied kinetic theory with collision operators and
unified the previous MHD calculations. Later, Drake
et al.[16, 17] extended the kinetic tearing mode theory
to the collisionless regime, and thus the problem is di-
vided into three regimes: collisionless, where the linear
growth rate is much larger than collision frequency, i.e
Y > v.; semi-collisional regime where v ~ v, and col-
lisional where v, is large. The kinetic point of view of
the basic physical process is that a perturbed current is
produced by the induced electric field around the central
layer, and this current drives tearing mode instability,
thereby causing magnetic reconnection.

Kinetic simulations of collisionless tearing mode was
first carried out by Katanuma et al.[18] with a full ki-
netic particle code. Sydora[19] does the simulation using
gyrokinetic-Vlasov equation, and applied realistic mass

ratio (m;/m, = 1837) and long time scale runs. Re-
cently, Ricci et al.[20] studied the simulation of magnetic
reconnection with an implicit particle-in-cell code in the
limit of weakly magnetized plasma.

Our approach is to use a recently developed gyrokinetic
0 f particle-in-cell code[21, 22] to study the tearing mode.
Using the d f method allows accurate linear behavior and
very clean nonlinear saturation. This simulation can use
realistic physical parameters and can be pushed to box
sizes a few hundred p; in the radial direction. The & f
method is used to keep noise low. The fully nonlinear
gyrokinetic equation for ions and drift kinetic equation
for electrons are solved. We restrict our study to two-
dimensions, by setting k, = 0.

Another new result here is a pitch-angle scattering col-
lision operator in the electron drift kinetic equation is
used to study the tearing mode instability in the semi-
collisional regime. In this regime the nonlinear evolu-
tion of the tearing mode has three stages: early linear
growth; then as the exponential growth slows down there
is a stage in which the width of the magnetic island
grows algebraically with time[7, 17]; and the nonlinear
saturation[9, 13, 14]. Our simulation results clearly show
the algebraic growth stage, as well as the following final
nonlinear saturation.

II. SIMULATION MODEL
A. The current profile

The physical current profile is similar to previous
investigations[18, 19]. We assume there is an equilibrium
slab current in the z direction along a strong guiding field
BzO; with
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a is the half-width and C} is the amplitude of the current,
for which Refs. [18, 19] have used the electron thermal
velocity, i.e. C1 = —wvye, but any value can be used. For
simplicity, we have set T; = T, = m.vZ. An ion-electron
mass ratio of 1837 is assumed throughout the paper.
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FIG. 1: The equilibrium anti-parallel magnetic field in y di-
rection.

In addition to the guiding field B, the equilibrium
current J,o generates a field Byo(z) which has anti-
parallel field lines across ¢ = L, /2, shown in Fig. 1. The
form of By is

1 —L,/2
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where the Erf(z) is the error function.
The perturbed magnetic field can be represented by a
vector potential A, (x,y,t) through

§B =V x (4,2) = 6B,& + 6B, 3. (3)

The boundary condition is periodic in the y and z
directions and for z direction we have conducting wall
boundary conditions:

A(z) = ¢(z) =0for z =0 and z = L,. 4)

There is no external electrostatic field and the total vec-
tor potential is A, = A, + A,, A, is induced by the
equilibrium current that gives the By, field and satisfies
the boundary condition A, = 0 at z = 0 and z = L,.
As mentioned earlier, we restrict our present study to
two-dimensions by keeping only the k, = 0 mode.

By < B, we can assume the parallel direction is the
z direction and then the equilibrium electron distribution
function is
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after integration over the perpendicular plane we have

Jo(z,v)) = 27r/ Fo(z, Vv do
0
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However, in the simulation code we use the canonical
momentum py rather than v coordinate to eliminate
difficulties with finite-differencing 0A/0t[21]. With p
defined by
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the actual zeroth-order distribution function for simula-
tion is then
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fo(z,p)) =
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B. Electron drift kinetic equation

We begin with the total electron distribution function

fe :fO(m7p||)+5fa (9)
where dof(x,p))/dt = —dfo(z,p)/dt. The electron
drift-kinetic equation for § f is then

o f . 00f
W + VG V(Sf + D %
B,  Exb . 9fo
= —|v + Vo —py=2. (10
( I B, B, > fo—p oy (10)

The terms on the left hand side can be evaluated by fol-
lowing particle trajectories, i.e. method of characteris-
tics. Vg is the guiding center velocity,
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b is the direction of magnetic field so that
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We should also note that in Eq. (10) and (11) the b and
By are only for the equilibrium magnetic field, the per-
turbed magnetic field is not included. The equation of
motion for p is
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III. EIGENMODE ANALYSIS

Here, an eigenmode analysis of the collisionless linear
tearing mode is given. According to Drake and Lee’s



theory[16], in the collisionless and semi-collisional limit,
the perturbed electrostatic potential can be neglected,
i.e. ® = ¢ = 0. The ion motion can be neglected as well
since the half width of the perturbed current A is much
less than p;. We'll test this statement later in simulation
but for now we accept ¢ = 0 and eliminate ions response,
then solve the linearized electron drift kinetic equation.
After linearizing Eq. (10), it becomes:
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The E x B terms are neglected by assuming ¢ = 0. We
can then write the §B, and and ¢ in terms of A, in
Eq. (14):
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Writing A, as A,(X,t) = Az(x)e"[(ky“kzz)*“’t] and us-

ing
0 0
9 ., and — 1
6y—> . — ik andat—> (17)
Eq. (14) becomes
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A, is induced by the perturbed current J, through the
Ampere’s law, and for the case that ions motion can be
neglected the current is from electrons only:

V34, = —pol, = uonoe/_ dvvyé fo(z,vy). (19)

With Eq. (18) and (19), k. = 0, a second order ordinary
differential equation is obtained for A(x):
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FIG. 2: A,(z) as the eigenfunction. Solid line, the real part,
dotted line, the imaginary part, and dashed line, the absolute
value. Plot is scaled to the unit that ®A4.(L,/2) = 1.

We have defined V' = v — uo(z) and the integrals

Vne—V2/2v?
V + uo(z) — wBo/Byoky

= (22)

vy

can be integrated analytically.

We can numerically solve Eq. (20) as an eigenvalue
problem for w, using a shooting method, given A(z) = 0
at £ = 0 and = L,. It turns out that for the physical
parameters, w is purely imaginary, therefor the linear
growth rate is just v = w/i.

The procedure here is very similar to that of Katanuma
et al. [18], but in our result the eigenfunction of A, has
a double peaked structure at the center, shown in Fig. 2,
which is consistent with the fact that the tearing mode
parameter,

=3

or ox 2

N = (oA 40 = g A =) 1A
is positive, where A is the width of the central layer.
A" > 0 is the condition of unstable tearing mode.

In Fig. 3 we compare the linear growth rate from small
box simulations to the eigenmode result. We change kya
by changing a, the half width of the equilibrium current,
and ky = 2n/L, is fixed. In both collisionless and colli-
sional linear theories [1, 16, 23], A’ is determined by the
two outer regions, which can be approximated as colli-
sionless and A’a is a function of kya only.

In Fig. 4 we plot the A, (z,y) from simulation at y =
L, /2, and compare to the real part of the eigenfunction
A.(z). Both of them have the double peaked structure.
Excellent agreement between the linear eigenmode theory
and particle simulation is shown in Fig. 4.
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FIG. 3: Linear growth rate as a function of kya, compared to
the eigenmode analysis. L, = 2.5p;, L, = 6.28p;, 8 = 0.1%,
C1 = —vte. a is varied and k, = 1.0p; ' is fixed.
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FIG. 4: Eigenfunction of A, (), solid line is from simulation
and dotted line is from eigenmode calculation. L, = L, =
10pi, B =1%, a = 0.5p; and C1 = —0.14v,

IV. SIMULATION RESULTS OF THE
COLLISIONLESS TEARING MODE

A. Linear growth rate

According to the linear theories[16, 18] derived from
the electron drift kinetic equation, the collisionless linear
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FIG. 5: Linear growth rate is proportional to amplitude of
Byo. Ly = Ly = 10p;, a = 0.5p; and 8 = 1%. Amplitude of
equilibrium current is varied to give different values of Byo.

growth rate is
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where vy, is the electron thermal velocity, &, L= ¢/wpe
and [/, is the magnetic shear length about z = L, /2,
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Eq. (23) and (24) make it clear that the collisionless lin-
ear growth rate is proportional to the amplitude of anti-
parallel magnetic field that induces the tearing mode in-
stability, i.e. yx o Byo(0)/Bo. This result is observed
in the eigenmode analysis and in simulation, shown in
Fig. 5.

We see that for this 10p; x 10p; box size, our simulation
result with fixed ions and ¢ = 0 still agree with the eigen-
mode analysis, but not as well as for the 2.5p; x 6.28p;
small box simulation. This is due to the limit of grid
points we have in z direction. In eigenmode analysis we
have thousands of grid points in z but in simulation we
have only 64, if we increase the number of grid points
and number of particles we do have better agreement,
but simulations become much more computationally de-
manding.

Simulation results with the full gyrokinetic ions re-
sponse are also shown in Fig. 5. The growth rate is higher
than for the case of fixed ions and ¢ = 0 simulation. This
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FIG. 6: Nonlinear evolution of the magnetic island width.
Dotted line is measured directly from simulation and solid line
is derived from the amplitude of A,. L, = 2.5p;, L, = 6.28p;,
ﬁ = 0.1%, a = 0.5p¢, Cl = —Vte-

fact has also been found by [18] and is due to the elec-
trostatic field, ¢. The E x B drift of electrons causes a
perturbed current in the z direction, J,.f, in addition to
the J. caused by the induced electric field. Thus, the to-
tal perturbed current is increased and results in a higher
growth rate.

For the results presented here, neglecting the ion re-
sponse is reasonable for the small box simulations with
a = 0.5p;. In such a case, with or without the ion re-
sponse there is almost the same linear growth rate and
nonlinear saturation level.

B. Nonlinear saturation level and the electron
bounce frequency

Next, we discuss the nonlinear simulation results and
how they compare with existing theory. Since A4, (z,y) =
Ao(z,y)+ A, (x,y) is constant along a field line, the half
width of the magnetic island, w, is determined by A, In
assuming that A, is constant across the central layer, i.e.
A, (z,y) = A, cos(kyy), where A, is the amplitude of the
perturbed vector field. Refs. [23] and [17] show

ALl

w = .
BzO

(25)

In Fig. 6, the time evolution of w is plotted using Eq. (25)
as a solid line, where [, is calculated using Eq. (24). The
dotted line is a direct measure of w from the simulation,
where we have used the fact that the ‘boundary’ field line
across the y axes is at the maximum and minimum value
of A(0,y). A square waveform appears in this diagnostic
because we have only 32 grid cells in z.

As the island grows, eventually w > Ap, and tear-
ing mode instability enters the nonlinear phase. In this

phase the tearing layer grows with the width of the is-
land, thus the growth rate has to decrease so that the
released magnetic energy can heat the larger number of
particles inside the layer. Quantitatively, the saturation
level of collisionless nonlinear tearing mode is predicted
by [17] as

AI
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where G = 0.410 is a constant. To verify the nonlinear
theory we combine Eq. (26) with (23) to get the relation
of nonlinear saturation level and the linear growth rate

_ ’Ykls
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(27)

We can calculate v, using eigenmode analysis and then
use Eq. (27) to calculate the theoretical value of w at
saturation level. For the case of Fig. 6 theoretical value
of w is 0.597p; and from simulation it is 0.585p;, so the
nonlinear saturation level is well verified. Oscillations in
Fig. 6 after saturation are due to the bounce motion of
trapped electrons in the island, the frequency is[17]

wp = kvgew/21s. (28)

Combining with Eq. (27) we obtain the the following
bounce frequency

Wp = ’yk/ZG = 1.22’)%. (29)

From Fig. 6 the frequency is about 0.4€); and from
Eq. (29) it is about 0.5;. Ref. [18] also noted the fact
that Wh R V-

V. THE RUTHERFORD REGIME

In this section, initial studies of the semi-collisional
tearing mode are presented. We add a Lorentzian colli-
sion operator for electron-ion collisions, to the electron
drift kinetic equation (10)[21]:

afe
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where A = v| /v is the pitch-angle parameter and v, the
collision frequency. v, is generally dependent on v, but
in our simulation v, is taken as a constant parameter, to
be consistent with Ref. [17]. The system is called “col-
lisionless” when if the linear growth rate of collisionless
tearing mode instability v; > v, and “semi-collisional”
if v ~ ve.



To determine the form of the collision operator, use
fe = fo+4df, so that

Cr(fe) = Cr(fo(z,p))) + CL(Sf), (32)

where fo is the the shifted Maxwellian distribution func-
tion (8). The second term is implemented using the
Monte-Carlo method[21]. In calculating CL (fo(z,p))) we
only keep the term that is proportional to /1”, and the
result is

Cr (folz,py))

/I”ucfo(x,v”) [%(02 - Uﬁ)

(v) — “0))
e = (1+ 57 - w) - 39

For the (v* — vj) terms in the Eq. (33), from By +
mevﬁ/2 = mv?/2 we have v? — vﬁ = 2Bu/m..

The most significant character of collisional tearing
mode is that there is an algebraic growth of the magnetic
island in the nonlinear stage, as predicted theoretically
by Rutherford [7] with MHD theory and by Drake et al.
[17] with kinetic theory. This algebraic growth stage has
even been observed experimentally by Zhang et al. [24]
for the evolution of the m/n = 2/1 tearing mode in the
TEXT tokamak.

After the linear stage, the effective nonlinear growth
rate becomes smaller, and when v < v, the tearing mode
enters the algebraic stage. Ref. [17] predicts that
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v(t) = G’ (34)
Since v(t) = dln A, /dt, Eq. (25) yields
dw v A’
dt  4k2G° (35)

showing that the magnetic island width grows alge-
braically at this stage. Note this expression of dw/dt
appears to be more accurate than the dw/dt = A'c? /16G
equation as in Ref. [17], since it indicates that dw/dt is
proportional to v, and this is confirmed by the simulation
results presented here. The tearing mode parameter A’
is theoretically the same for both the collisionless and the
semi-collisional tearing mode, since it is determined by
the two outer regions, which are taken to be collisionless.

To quantitatively compare Eq. (35) with simulation
results, again, we need to re-write it in terms of the colli-
sionless linear growth rate -y, this is done by combining
Eq. (35) with (23), to obtain

d_w _ Vc’ykls
dt ~ 2Gkyur

Condition for the validity of Eq. (34) and hence (36)
is
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FIG. 7: Nonlinear evolution of semi-collisional tearing mode.
L, = 10pi, L, = 10.28p;, a = pi, B = 1%, and C1 = —0.020..
v. = 0.003Q;.

where A, is the half width of J, of the linear semi-
collisional tearing instability and is related to its colli-
sionless counterpart as A, ~ Ag(ve/vx)?/® [16]. Since
for the semi-collisional tearing mode 7y, ~ v., to ensure
(37) we need a small Ay (Ag < p; is the condition for
tearing mode to neglect ions response). According to
the collisionless linear theory Ay =~ k%—a, then Eq. (37)
requires

1/k§ < a*. (38)

Since k3! = c/wpe and (pi/(c/wpe))? = Bmi/me, (38)
becomes

. N\ 2
gl (&) , (39)
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Because of this, our code is well-suited to observe the
algebraic growth stage in the semi-collisional tearing
mode. For simulations with L, up to 10p;, a is gen-
erally smaller than or comparable with p;, then Eq. (39)
means fm;/me > 1, and the so-called “high 3” prob-
lem of gyrokinetic PIC simulation has just recently been
solved and implemented in our code[21].

In Fig. 7 we present results with a 10p; x 10.28p; simu-
lation of the nonlinear semi-collisional tearing mode. a =
pi, B = 1%. We have made the equilibrium current small
so that the linear growth rate of the collisionless tearing
mode from eigenmode analysis is v = 0.009Q2;, which is
comparable to v. = 0.003(2;. From about ¢t = 6009;1 to
t = 28009, ! We see a clear algebraic growth stage. Lin-
ear fitting of this stage gives dw/dt = 1.48 x 10~*p;Q);.
The theoretical value can be calculated using Eq. (36),
the result is dw/dt = 1.51 x 10~*p;Q;, in good agreement
with simulation.

The nonlinear saturation level of the collisionless tear-
ing mode with these parameters is at w = 0.14p;.
Theoretically[17], at this level w &~ Ay (in our model,
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FIG. 8: dw/dt as a function of v.. Solid line represents theo-
retical values calculated using Eq. (36) and squares are from
simulation.

w = 2.4/}, actually). Since Ay, ~ A,.(v/ve)?/?, we can
see from Fig. 7 the algebraic growth starts well after the
collisionless saturation level, where w > A, is satisfied.

In Fig. 8, we show the dw/dt results with differ-
ent collision frequencies ranged from v, = 0.0005Q2; to
v, = 0.004Q;. The simulation results agree fairly well
with theory for 0.0005 < v./Q; < 0.003, showing the
proportional relation of dw/dt and v.. Simulations with
larger collision rates are more demanding, since the size
of the random change in the pitch-angle variable A in a
time step At is proportional to /v.At. Smaller At has to
be used for larger v, to approximate the diffusive process
in pitch-angle scattering.

After the algebraic growth stage we see the instability
finally saturates at about w = a, which is much bigger
than the collisionless saturation level. White et al.[9]
first studied the saturation of nonlinear resistive tearing
mode and it has also been observed in experiment[24].
Recent studies with reduced MHD theory[13, 14] shows
that in the limit of small w compared to current width,
the saturation level is proportional to A’ and indepen-
dent of resistivity. In Fig. 9 we show simulation results of
the saturation levels with different collision frequencies.
Simulations at larger collisionality are difficult because as
the saturation level increases d f / f becomes large and the
benefit of § f algorithm is lost, thereby requiring a much
larger number of particles. Because of these numerical
constrains we have limited our simulation time. How-
ever, particle number convergence has been tested. Also,
the very weak collisionality regime is very important for
many tokamak plasmas. Fig. 9 indicates the saturation
level is dependent on v., and the higher v., the higher
saturation level. We note that in our simulation a = p;

is small and at the saturation level w is comparable to a,
thus the MHD theories can not be applied.
1
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FIG. 9: Nonlinear evolution of the semi-collisional tearing
mode with different values of collision frequency. Same pa-
rameters as Fig. 8. v, equals to 0.0005, 0.001, 0.002, 0.003 and
0.004Q; for saturation levels from low to high, respectively.

VI. SUMMARY

The evolution of the collisionless and semi-collisional
tearing mode was studied using a recently developed 4 f
particle-in-cell simulation model. Linear simulation re-
sults are benchmarked with eigenmode analysis for the
case of fixed ions. A double humped eigenmode structure
was observed in both the eigenmode analysis and simula-
tion corresponding with positive A’. Simulation results
compared favorably to theory in linear growth rate, non-
linear saturation level and electron bounce frequency. In
simulations with a narrow current layer (a ~ p;), we
verified the assumption that the ions response can be ne-
glected. The semi-collisional tearing mode was studied by
including electron-ion collisions and the algebraic growth
in the Rutherford regime was observed in simulation for
the first time. The algebraic growth rate scaling with col-
lisionality agrees quantitatively with theory at small col-
lisionality. Nonlinear saturation following the algebraic
growth phase was observed. These are promising results
and we plan to extend this work to three-dimensions and
larger island size in the near future.
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